Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Opt Express ; 12(4): 2015-2026, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33996213

RESUMO

We present the first clinical integration of a prototype device based on integrated auto-fluorescence imaging and Raman spectroscopy (Fast Raman device) for intra-operative assessment of surgical margins during Mohs micrographic surgery of basal cell carcinoma (BCC). Fresh skin specimens from 112 patients were used to optimise the tissue pre-processing and the Fast Raman algorithms to enable an analysis of complete Mohs layers within 30 minutes. The optimisation allowed >95% of the resection surface area to be investigated (including the deep and epidermal margins). The Fast Raman device was then used to analyse skin layers excised from the most relevant anatomical sites (nose, temple, eyelid, cheek, forehead, eyebrow and lip) and to detect the three main types of BCC (nodular, superficial and infiltrative). These results suggest that the Fast Raman technique is a promising tool to provide an objective diagnosis "tumour clear yes/no" during Mohs surgery of BCC. This clinical integration study is a key step towards a larger scale diagnosis test accuracy study to reliably determine the sensitivity and specificity in a clinical setting.

2.
Biomed Opt Express ; 12(2): 940-954, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33680551

RESUMO

The standard treatment for breast cancer is surgical removal mainly through breast-conserving surgery (BCS). We developed a new technique based on auto-fluorescence (AF) spectral imaging and Raman spectroscopy for fast intraoperative assessment of excision margins in BCS. A new wide-field AF imaging unit based on total internal reflection (TIR) was combined with a Raman spectroscopy microscope equipped with a 785 nm laser. The wavelength of the AF excitation was optimized to 365 nm in order to maximize the discrimination of adipose tissue. This approach allows for the non-adipose regions of tissue, which are at a higher risk of containing a tumor, to be targeted more efficiently by the Raman spectroscopy measurements. The integrated TIR-AF-Raman was tested on small tissue samples as well as fresh wide local excisions, delivering the analysis of the entire cruciate surface of BCS specimens (5.1 × 7.6 cm2) in less than 45 minutes and also providing information regarding the location of the tumor in the specimen. Full automation of the instrument and selection of a faster translation stage would allow for the measurement of BCS specimens within an intraoperative time scale (20 minutes). This study demonstrates that the TIR-AF Raman microscope represents a feasible step towards the development of a technique for intraoperative assessment of large WLE within intraoperative timescales.

3.
Opt Lett ; 43(23): 5733-5736, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30499980

RESUMO

We present a time-gated Raman micro-spectroscopy technique suitable for fast Raman mapping of samples eliciting large laser-induced fluorescence backgrounds. To achieve the required time resolution for effective fluorescence rejection, a picosecond pulsed laser and a single-photon avalanche diode were used. A module consisting of a spectrometer, digital micromirror device, and two prisms was used for high-resolution spectral filtering and multiplexing, which is required for a high chemical specificity and short integration times. With this instrument, we demonstrated time-gated Raman imaging of highly fluorescent samples, achieving acquisition times as short as 3 min for 40×40 pixel resolution images.

4.
Breast Cancer Res ; 20(1): 69, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29986750

RESUMO

BACKGROUND: In over 20% of breast conserving operations, postoperative pathological assessment of the excised tissue reveals positive margins, requiring additional surgery. Current techniques for intra-operative assessment of tumor margins are insufficient in accuracy or resolution to reliably detect small tumors. There is a distinct need for a fast technique to accurately identify tumors smaller than 1 mm2 in large tissue surfaces within 30 min. METHODS: Multi-modal spectral histopathology (MSH), a multimodal imaging technique combining tissue auto-fluorescence and Raman spectroscopy was used to detect microscopic residual tumor at the surface of the excised breast tissue. New algorithms were developed to optimally utilize auto-fluorescence images to guide Raman measurements and achieve the required detection accuracy over large tissue surfaces (up to 4 × 6.5 cm2). Algorithms were trained on 91 breast tissue samples from 65 patients. RESULTS: Independent tests on 121 samples from 107 patients - including 51 fresh, whole excision specimens - detected breast carcinoma on the tissue surface with 95% sensitivity and 82% specificity. One surface of each uncut excision specimen was measured in 12-24 min. The combination of high spatial-resolution auto-fluorescence with specific diagnosis by Raman spectroscopy allows reliable detection even for invasive carcinoma or ductal carcinoma in situ smaller than 1 mm2. CONCLUSIONS: This study provides evidence that this multimodal approach could provide an objective tool for intra-operative assessment of breast conserving surgery margins, reducing the risk for unnecessary second operations.


Assuntos
Neoplasias da Mama/cirurgia , Carcinoma Ductal de Mama/cirurgia , Carcinoma Intraductal não Infiltrante/cirurgia , Mastectomia Segmentar , Adulto , Mama/fisiopatologia , Mama/cirurgia , Neoplasias da Mama/fisiopatologia , Carcinoma Ductal de Mama/fisiopatologia , Carcinoma Intraductal não Infiltrante/fisiopatologia , Feminino , Humanos , Margens de Excisão , Pessoa de Meia-Idade , Neoplasia Residual/fisiopatologia , Neoplasia Residual/cirurgia , Análise Espectral Raman
5.
Appl Spectrosc ; 71(12): 2595-2607, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28828895

RESUMO

While Raman hyperspectral imaging has been widely used for label-free mapping of biomolecules in cells, these measurements require the cells to be cultured on weakly Raman scattering substrates. However, many applications in biological sciences and engineering require the cells to be cultured on polymer substrates that often generate large Raman scattering signals. Here, we discuss the theoretical limits of the signal-to-noise ratio in the Raman spectra of cells in the presence of polymer signals and how optical aberrations may affect these measurements. We show that Raman spectra of cells cultured on polymer substrates can be obtained using automatic subtraction of the polymer signals and demonstrate the capabilities of these methods in two important applications: tissue engineering and in vitro toxicology screening of drugs. Apart from their scientific and technological importance, these applications are examples of the two most common measurement configurations: (1) cells cultured on an optically thick polymer substrate measured using an immersion/dipping objective; and (2) cells cultured on a transparent polymer substrate and measured using an inverted optical microscope. In these examples, we show that Raman hyperspectral data sets with sufficient quality can be successfully acquired to map the distribution of common biomolecules in cells, such as nucleic acids, proteins, and lipids, as well as detecting the early stages of apoptosis. We also discuss strategies for further improvements that could expand the application of Raman hyperspectral imaging on polymer substrates even further in biomedical sciences and engineering.


Assuntos
Técnicas de Cultura de Células/métodos , Análise de Célula Única/métodos , Análise Espectral Raman/métodos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Técnicas de Cultura de Células/instrumentação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Células MCF-7 , Polímeros/química , Polímeros/farmacologia , Razão Sinal-Ruído , Análise de Célula Única/instrumentação , Análise Espectral Raman/instrumentação
6.
Opt Lett ; 38(22): 4750-3, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24322123

RESUMO

We present an angular-scattering optical method that is capable of measuring the mean size of scatterers in static ensembles within a field of view less than 20 µm in diameter. Using interferometry, the method overcomes the inability of intensity-based models to tolerate the large speckle grains associated with such small illumination areas. By first estimating each scatterer's location, the method can model between-scatterer interference as well as traditional single-particle Mie scattering. Direct angular-domain measurements provide finer angular resolution than digitally transformed image-plane recordings. This increases sensitivity to size-dependent scattering features, enabling more robust size estimates. The sensitivity of these angular-scattering measurements to various sizes of polystyrene beads is demonstrated. Interferometry also allows recovery of the full complex scattered field, including a size-dependent phase profile in the angular-scattering pattern.


Assuntos
Interferometria/instrumentação , Lentes , Refratometria/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...